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The concept of resonant (or Clar) pattern is extended to a plane non-bipartite graph
G in this paper: a set of disjoint interior faces of G is called a resonant pattern if such
face boundaries are all M-conjugated cycles for some 1-factor (Kekulé structure or perfect
matching) M of G. In particular, a resonant pattern of benzenoids and fullerenes coin-
cides with a sextet pattern. By applying a novel approach, the principle of inclusion and
exclusion in combinatorics, we show that for any plane graphs, 1-factor count is not less
than the resonant pattern count, which generalize the corresponding results in benzenoid
systems and plane bipartite graphs. Applications to fullerenes are also discussed.
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1. Introduction

During the last three decades some important graph-theoretical approaches
were established for general resonance theory of polycyclic hydrocarbons, such
as Herndon’s work [10] and Randić conjugated circuit model [16,17]. The sex-
tet patterns of benzenoid systems reflect the combinatorial background of Clar’s
concept of the aromatic sextet [5,15], and can be used for the calculation of
the resonance energy of benzenoid hydrocarbons [1,9]. Some nice mathematical
properties ever were revealed: for cata-condensed benzenoid systems [11,15] there
exists a one-to-one correspondence between the sextet patterns and Kekulé struc-
tures, the latter is called 1-factor or perfect matching in graph theory; For gen-
eral benzenoid system the sextet pattern count is no larger than Kekulé struc-
ture count. Gutman [8] and John [12] independently defined the cell polynomial
for counting resonant patterns of plane bipartite graphs that extends naturally
Hosoya and Yamaguchi’s sextet polynomial [11]. John et al. [13] showed that the
1-factor count is larger than or equal to the resonant pattern count. Further
Shiu et al. [19] gave a simple criterion for these two quantities being identical.
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It is natural to ask whether such a relation exists for fullerene graphs [7]
(the molecular graphs of fullerenes, planar three-connected cubic graphs 12 of
whose faces are pentagons and any remaining faces are hexagons). In fact the
famous member buckministerfullerene [14] of fullerenes has 5828 sextet patterns
[20] and 12500 Kekulé structures [18]. In this paper we extend naturally the con-
cept of sextet pattern or resonant pattern to general plane graphs and show that
the corresponding relation still holds by applying a new approach, i.e. the prin-
ciple of inclusion and exclusion in combinatorics. Since benzenoid systems, cor-
onoid systems, and planar alternant systems, and planar non-alternant systems
(for example, fullerene graphs) as well, are special types of plane graphs (see a
recently detailed survey [17]), we not only extend greatly the previous result but
also give a positive answer to the above problem.

2. Concepts and main results

A plane graph G is an embedding of a planar graph in the Euclidean plane.
An interior face of G is said to be a cell if its boundary is a cycle. An even-cell
means a cell that is bounded by a cycle with even sides. For convenience, a cell
may be simply referred to its boundary. Without loss of generality we confine
our consideration to plane graphs without loops and multiple edges and such
that each edge is drawn as a straight segment and each cell as a polygon.

Let G be a plane graph with vertex-set V (G) and edge-set E(G). A 1-factor
(or perfect matching, Kekulé structure) of G is a set of pairwise disjoint edges of
G that cover all of its vertices. For a 1-factor M of G, a cycle C of G is called
M-alternating (or conjugated) if the edges of C appear alternately on and off the
M. Such an alternating cycle is called a resonant cycle. A face is called resonant
if its boundary is a resonant cycle. For example, the plane bipartite graph in fig-
ure 1 represents a derivative of biphenylene, cells C1, . . . , C6 are alternating, and
together with C7 are all resonant.

Definition 1. A set S of pairwise disjoint cells of a plane graph G is called reso-
nant pattern (or Clar pattern), if G has a 1-factor M such that all cells in S are
simultaneously M-alternating cycles.

Figure 1. A plane bipartite graph with a Kekule structure.
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Equivalently, a resonant pattern of G means a set S of pairwise disjoint
even cells of G such that G – S has a 1-factor, where G – S denotes the sub-
graph obtained from G by deleting all vertices in cells of S together with their
incident edges. Note that the empty set is a resonant pattern of a plane graph
with a 1-factor, and a plane graph without a 1-factor has no resonant patterns.

Throughout this paper, let K(G) and R(G) denote the sets of 1-factors and
resonant pattern of a plane graph G, respectively. Let k(G) := |K(G)|, r(G) :=
|R(G)|. Namely, k(G) and r(G) are the numbers of 1-factors and resonant pat-
terns of a plane graph G, respectively.

In particular, resonant patterns of benzenoid systems and fullerenes are
usual sextet patterns, which consists of only aromatic (π -electron) sextets (i.e.
benzenoid hexagons). For example, {C1, C3, C3} in figure 2 (right) is a sextet pat-
tern of coronene; {C1, C3} in figure 3 (right) is a sextet pattern of corannulene
([3], a part of buckminsterfullerene), the central cell is not resonant since it is
an odd cell and the other cells (hexagons) are all aromatic sextets: Dodecahe-
dron has a unique resonant pattern ∅.

For a plane system G consisting of exclusively pentagonal and hexagonal
cells, the sextet polynomial BG(x) is defined as

BG(x) =
m∑

k=0

r(G, k)xk, (1)

where r(G, k) denotes the number of sextet patterns with k resonant sextets of G

and m is the Clar number, i.e. the maximum number of sextets in sextet patterns.
Hence r(G) = BG(1). The sextet polynomial of coronene is [15] Bcoronene(x) =
1 + 7x + 9x2 + 2x3. Hence r(coronene) = Bcoronene(l) = 19 and k(coronene) = 20.

Let G be a plane bipartite graph (i.e., all cycles have even length). Then G

is called elementary if G is connected and each edge is contained in a 1-factor,
and weakly elementary [19] if each conjugated cycle with its interior form an ele-
mentary graph. A subgraph H of G is said to be nice if G – V (H) has a 1-factor.
So a resonant cycle of G is a nice cycle and a pair of resonant cycles mean two
disjoint cycles that form a nice subgraph.

Figure 2. A Kekulé structure (left) and sextet pattern (right) of coronene.
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Figure 3. A Kekulé structure (left) and a resonant pattern (right) of corannulene.

For benzenoid systems and general plane bipartite graphs G the follow-
ing theorems show that the 1-factor count k(G) is no less than resonant pattern
count r(G).

Theorem 2.1. ([21]). For a benzenoid system G, r(G) � k(G), and equality holds
if and only if G contains no coronene (figure 2) as its nice subgraph.

Theorem 2.2. ([13,19]). Let G be a connected plane bipartite graph. Then r(G) �
k(G), and equality holds if and only if G is weakly elementary and for any pair
of resonant cycles their interior regions are disjoint.

In this paper we mainly consider plane non-bipartite graphs. For example,
the resonant patterns of corannulene (figure 3) are as follows: ∅, {C1}, {C2}, {C3},
{C4}, {C5}, {C1, C3}, {C1, C4}, {C2, C4}, {C2, C5}, {C3, C5}. Hence Bcorannulene(x) =
1+5x+5x2. It is computed [4] that k(corannulene) = 11. That is, r(corannulene) =
k(corannulene) = 11. For dodecahedron (C20) and buckminsterfullerene (C60) we
have that r(C20) < k(C20) and r(C60) < k(C60). In general we have the following
main result of this paper, whose proof will be given in next section.

Theorem 2.3. For any plane graphs G, r(G) � k(G).

3. Proof of main theorem 2.3

The proofs of Theorems 2.1 and 2.2 completely rely on the bipartite prop-
erty of graphs and the existence of a root Kekulé structure. In non-bipartite case
such root Kekulé structure does not exist. So we must seek for a new approach.

To prove Theorem 2.3 we set up the following lemmas. For disconnected
plane graphs G, we have the following relations concerning the parameters k(G)

and r(G).



H. Zhang and J. He / A comparison between 1-factor count and resonant pattern count 319

Lemma 3.1. Let G1, G2, . . . Gn(n � 1) be the components of a plane graph G

with a 1-factor. Then

k(G) =
n∏

i=1

k(Gi) (2)

and

r(G) �
n∏

i=1

r(Gi). (3)

Second equality holds if and only if every resonant cell of each Gi is also a cell
of G.

Proof. It is obvious that G has a 1-factor if and only if every Gi, i = 1, 2, . . . , n,
has a 1-factor and

K(G) =
{ n⋃

i=1

Mi : Mi ∈ K(Gi), i = 1, 2, . . . , n
}
, (4)

which implies equation (2).
For any S ∈ R(G), let Si := {C ∈ S : C ⊆ G}, i = 1, 2, . . . , n. Since every

resonant cell of G must be contained in some component, we have that
n⋃

i=1
Si =

S and Si ∈ R(G), i = 1, 2, . . . , n. Hence S ∈ {
n⋃

i=1
S ′

i : S ′
i ∈ R(Gi), i = 1, 2, . . . , n}

and

R(G) ⊆
{

n⋃

i=1

S ′
i : S ′

i ∈ R(Gi), i = 1, 2, . . . , n

}
. (5)

The inequality (3) follows from the above relation.
Finally r(G) = n

�
i=1

r(Gi) if and only if equality in relation (5) holds; equiv-

alently, every resonant cell of each Gi forms a resonant pattern of G and is thus
a cell of G.

The reduction method for 1-factor count of a graph described in the fol-
lowing lemma is obvious and well-known (see figure 4).

Lemma 3.2. Let ux be any edge of a graph G. Then

k(G) = k(G − uv) + k(G − u − v). (6)

Our reduction procedure for the resonant pattern count of a plane graph G

always proceeds at a boundary edge of G, i.e. an edge lying on the boundary of
the exterior face of G (for example, uv is a boundary edge of G in figure 4).



320 H. Zhang and J. He / A comparison between 1-factor count and resonant pattern count

Figure 4. An example for edge-deletion and vertex-deletion of a plane graph.

Lemma 3.3. Let G be a connected plane graph with a 1-factor. If a boundary
edge uv of G lies on the boundary C of some interior face, then

R(G) ⊆ R(G′) ∪ R(G′′) ∪ {S ′ ∪ {C} : S ′ ∈ R(G′) ∩ R(G′′)}, (7)

where G′ := G − uv and G′′ := G − u − v.

Proof. For any S ∈ R(G), there is a 1-factor M ∈ K(G) such that all cells in S

are simultaneously M-alternating. We distinguish the following two cases.
Case 1. C ∈ S. Since C is an M-alternating cell, then M ′: = M ⊕ C =

(M ∪E(C))\(M ∩E(C)) ∈ K(G). Without loss of generality we suppose uv /∈ M.
Then uv ∈ M ′, M ∈ K(G′), and M ′\{uv} ∈ K(G′′). Since M is a 1-factor of
G′ and all cells in S\{C} are disjoint M-alternating cells of G′, then we have
that S\{C} ∈ R(G′). By the same reason we have that S\{C} ∈ R(G′′). Hence
S\{C} ∈ R(G′)

⋂ R(G′′) and

S ∈ {S ′ ∪ {C} : S ′ ∈ R(G′) ∩ R(G′′)}.

Case 2. C /∈ S. If uv ∈ M, none of u and v lie on a cell in S since uv is
a boundary edge of G and each cell in S contains no uv. Hence M\{uv} is a
1-factor of G′′ and S consists of disjoint (M\{uv})-alternating cells of G′′, which
imply that S is a resonant pattern of G′′. If uv /∈ M, we have that S ∈ R(G′) in
an analogous manner.

Summing up the above, we have

S ∈ R(G′) ∪ R(G′′) ∪ {S ′ ∪ {C} : S ′ ∈ R(G′) ∩ R(G′′)},

which implies the required relation (7).

Lemma 3.4. Let G be a connected plane graph with a 1-factor. If e = uv is a
boundary edge of G, then

r(G) � r(G − uv) + r(G − u − v). (8)
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Proof. Let G′ := G−e and G′′ := G−u−v. If e is a cut-edge of G, there are two
cases: (1) e belongs to all 1-factors of G. Then R(G) = R(G′′), and R(G′) = ∅
since G′ has no 1-factor; (2) e belongs to none of 1-factors of G. Then R(G′′) =
∅ and R(G) = R(G′). Hence equality in (8) holds, i.e. r(G) = r(G′) + r(G′′).

So we now suppose that e is not a cut-edge of G. Then e must lie in the
boundary (say C) of some interior face of G. By Lemma 3.3 we have

R(G) ⊆ R(G′) ∪ R(G′′) ∪ {S ′ ∪ {C} : S ′ ∈ R(G′) ∩ R(G′′)}.
Then

r(G) � |R(G′) ∪ R(G′′)| + |R(G′) ∩ R(G′′)|
= |R(G′)| + |R(G′′)| (by Principle of Inculsion and Exclusion)

= r(G′) + r(G′′).

Hence the lemma follows.

Proof of Theorem 2.3. If the plane graph G in question has no 1-factor, then
r(G) = k(G) = 0. Hence we suppose G has a 1-factor and we shall prove r(G) �
k(G) by induction on the number |E(G)| of edges.

If |E(G)| = 1, r(G) = k(G) = 1. In what follows, suppose that |E(G)| >

1 and the assertion holds for plane graphs with smaller number of edges than
|E(G)|. If G is disconnected, then by the induction hypothesis we have that
r(Gi) � k(Gi) for all component Gi(1 � i � n) of G. Hence the result follows
immediately from relations (2) and (3) in Lemma 3.1:

r(G)
(3)

�
n∏

i=1

r(Gi) �
n∏

i=1

k(Gi)
(2)= k(G).

So we suppose G is connected. Let e = uv be a boundary edge of G. Then
we have

r(G) � r(G − uv) + r(G − u − v) (by Lemma 3.4)

� k(G − uv) + k(G − u − v) (by induction hypothesis)

= k(G). (by Lemma 3.2)

Hence the theorem follows.

4. Discussions

For benzenoid hydrocarbons there are several empirical equations relating
Kekulé structure count and resonance energy [9,10]. However, Austin et al. [2]
showed raw Kekulé count is a poor guide to π -electronic stability for fullerenes.
In fact they exhibited Kekulé counts of all 1812 fullerene isomers of C60 and
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found exactly 20 isomers surpassing the count of 12500 Kekulé structures for
the icosahedral C60. By using the Heisenberg model, Flocke et al. [6] found that
a smaller set of 5828 Kekulé structures of buckminsterfullerene already gives
99.82% of the ground state energy of the full set of Kekulé structures. Each
one of such chosen Kekué structures superposes the Fries Kekulé structure of
buckminsterfullerene to produce a sextet pattern. In fact the chosen 5828 Kekulé
structures have a one-to-one correspondence with all the sextet patterns. Shiu
et al. [20] computed the sextet polynomial of buckminsterfullerene

BC60(x) = 5x8 + 320x7 + 1240x6 + 1912x5 + 1510x4 + 660x3 + 160x2 + 20x + 1

and the sextet pattern count BC60(1) = 5828.
Hence it is useful to compute the number BF (1) of sextet patterns of fuller-

ene graphs F . We can show this quantity of any fullerene graph is equal to or
less than the number of Kekulé structures as the following proposition says.

Proposition 4.1. For any Fullerene graph F, BF � k(F ).

Proof. When every fullerene graph F is drawn in the plane such that the outer
face is bounded by a pentagon, each resonant pattern of this Schlegel-diagram
corresponds uniquely a sextet pattern. Hence the result follows from Theorem
2.3.

Proposition 4.2. Let G be a connected plane graph with a 1-factor. Let e be a
boundary edge of G such that e lies on the boundary C of an interior face. If
e is a non-fixed edge (those edge contained in some 1-factors of G and not in
others) and C is not resonant, then r(G) < k(G).

Proof. Since e =: uv is a non-fixed edge, then both G′ := G − uv and G′′ :=
G − u − v have 1-factors. Hence ∅ ∈ R(G′) ∩ R(G′′). Since C is not resonant,
S ′ ∪ {C} is not a resonant pattern of G for any S ′ ∈ R(G′) ∩ R(G′′). Hence by
Lemma 3.3 we have

R(G) ⊆ R(G′) ∪ R(G′′).

Then

r(G) � |R(G′) ∪ R(G′′)|
= |R(G′)| + |R(G′′)| − |R(G′) ∩ R(G′′)|
� r(G′) + r(G′′) − 1

< r(G′) + r(G′′),

which implies r(G) < k(G) by Theorem 2.3 and Lemma 3.2.



H. Zhang and J. He / A comparison between 1-factor count and resonant pattern count 323

Since every fullerene graph is 2-extendable [22] (i.e. any pair of disjoint
edges are contained in a 1-factor), all edges are non-fixed. Hence the above prop-
osition implies the following corollary at once.

Corollary 4.3. For any Fullerene graph F with adjacent pentagons, BF (1) < k(F ).

For all 1812 fullerene isomers of C60, only icosahedronal C60 (or buckmin-
sterfullerene) satisfies the isolated pentagon rule (IPR) [2]. Together with the pre-
vious discussions we always have BF (1) < k(F ) for all fullerene graphs F with
60 vertices. In general we propose the following conjecture.

Conjecture 4.4. For any Fullerene graphs F, BF (1) < k(F ).
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[17] M. Randć, Aromaticity of polycyclic conjugated hydrocarbons, Chem. Rev. 103 (2003) 3449.
[18] T.G. Schmalz, W.A. Seitz, D.J. Klein and G.E. Hite, C60 carbon cages, Chem. Phys. Lett. 130

(1986) 203.
[19] W.C. Shiu, P.C.B. Lam, F. Zhang and H. Zhang, Normal components, Kekulé patterns, and
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